Placenta‐Derived Adherent Stromal Cells Improve Diabetes Mellitus‐Associated Left Ventricular Diastolic Performance
نویسندگان
چکیده
Left ventricular (LV) diastolic dysfunction is among others attributed to cardiomyocyte stiffness. Mesenchymal stromal cells (MSC) have cardiac-protective properties. We explored whether intravenous (i.v.) application of PLacenta-eXpanded (PLX) MSC-like cells (PLX) improves LV diastolic relaxation in streptozotocin (STZ)-induced diabetic mice and investigated underlying mechanisms. Diabetes mellitus was induced by STZ application (50 mg/kg body weight) during five subsequent days. One week after the first STZ injection, PLX or saline were i.v. applied. Two weeks later, mice were hemodynamically characterized and sacrificed. At this early stage of diabetic cardiomyopathy with low-grade inflammation and no cardiac fibrosis, PLX reduced LV vascular cell adhesion molecule-1, transforming growth factor-β1, and interferon-γ mRNA expression, induced the percentage of circulating regulatory T cells, and decreased the splenic pro-fibrotic potential in STZ mice. STZ + PLX mice exhibited higher LV vascular endothelial growth factor mRNA expression and arteriole density versus STZ mice. In vitro, hyperglycemic PLX conditioned medium restored the hyperglycemia-impaired tube formation and adhesion capacity of human umbelical vein endothelial cells (HUVEC) via increasing nitric oxide (NO) bioavailability. PLX further induced the diabetes-downregulated activity of the NO downstream protein kinase G, as well as of protein kinase A, in STZ mice, which was associated with a raise in phosphorylation of the titin isoforms N2BA and N2B. Concomitantly, the passive force was lower in single isolated cardiomyocytes from STZ + PLX versus from STZ mice, which led to an improvement of LV diastolic relaxation. We conclude that i.v. PLX injection improves diabetes mellitus-associated diastolic performance via decreasing cardiomyocyte stiffness. Stem Cells Translational Medicine 2017;6:2135-2145.
منابع مشابه
Dipeptidyl peptidase-4 modulates left ventricular dysfunction in chronic heart failure via angiogenesis-dependent and -independent actions.
BACKGROUND The inhibition of dipeptidyl peptidase-4 (DPP4) protects the heart from acute myocardial ischemia. However, the role of DPP4 in chronic heart failure independent of coronary artery disease remains unclear. METHODS AND RESULTS We first localized the membrane-bound form of DPP4 to the capillary endothelia of rat and human heart tissue. Diabetes mellitus promoted the activation of the...
متن کاملDoppler-Derived Myocardial Performance Index in Healthy Children in Shiraz
Background: Assessment of myocardial function is essential in heart disease, but in regard to systolic and diastolic functions such evaluation has limitation. Ejection fraction is difficult to assess in abnormally-shaped ventricles, and diastolic inflow velocity pattern may be fused because of tachycardia. Objective: A myocardial performance index (MPI) or Tei index has been developed for adult...
متن کاملمقایسه یافتههای اکوکاردیوگرافی در نوزادان مادران با دیابت بارداری و نوزادان مادران سالم
Background: Gestational diabetes is associated with increased risk of congenital heart disease in neonates. The study was performed to evaluate the cardiac parameters in neonates of mothers with abnormal glucose tolerance test (GTT) and compare them with data of normal newborn. Methods: In a cross-sectional study in Amiralmomenin Hospital, Semnan City, Iran from April to October 2013, two grou...
متن کاملCardiovascular Manifestations of Diabetes Mellitus: A Narrative Review of Literatures
There are many studies documenting that diabetes mellitus is associated with cardiovascular diseases. Diabetes mellitus has a significant role and is an important risk factor in cardiovascular manifestations in patients with diabetes mellitus. Cardiovascular diseases are one of the main causes of morbidity and mortality in diabetic patients. Diabetes mellitus can affect performance, constructio...
متن کاملHuman placenta-derived adherent cells improve cardiac performance in mice with chronic heart failure.
Human placenta-derived adherent cells (PDACs) are a culture-expanded, undifferentiated mesenchymal-like population derived from full-term placental tissue, with immunomodulatory, anti-inflammatory, angiogenic, and neuroprotective properties. PDA-001 (cenplacel-L), an intravenous formulation of PDAC cells, is in clinical development for the treatment of autoimmune and inflammatory diseases. We t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017